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Kinetic-energy mass, momentum mass, and drift 
mass in steady irrotational subsonic flows 
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Irrotational flows caused by a body moving with a constant velocity in an unbounded 
homentropic compressible fluid at rest at infinity are considered. Provided the (steady) 
flow relative to the body is everywhere subsonic, it is shown that the momentum mass 
is always equal to the drift mass, and the kinetic-energy mass is equal to the drift mass 
under certain conditions. 

1. Introduction 
In the derivation of the Darwin theorem (Darwin 1953) presented in a previous 

paper (Yih 1985), I calculated the drift mass by first integrating from x = - 00 to x = 00 

in the steady flow relative to the moving body, and then integrating across the 
streamlines, and showed how Darwin’s theorem on the equality of drift mass and added 
mass can be very simply derived. In this paper I shall consider the drift mass md caused 
by the translation of a body in a compressible fluid, and relate it to the kinetic-energy 
mass mk of the fluid, provided that the flow relative to the body is steady, irrotational, 
and everywhere subsonic. 

By adopting the idea of partial drift volume initiated by Eames, Belcher & Hunt 
(1994), a weak form of the equality of md and mk is obtained which contains, on letting 
the domain of integration become infinite, the strong form of Darwin’s theorem for 
compressible fluids, i.e. the equality of the drift mass and the kinetic-energy mass. Both 
the two-dimensional and three-dimensional cases are treated. 

I take this opportunity to introduce the idea of the momentum mass and to show its 
equality to the drift mass, thus justifying Darwin’s dejnition of the drift mass by the 
momentum integral. The intervention of the momentum mass largely relieves us of the 
burden of having to explain the puzzling equality of mk, which has a kinetic 
significance, and md, which is purely kinematic in origin. 

The resistance encountered by a body accelerating in a compressible fluid is not 
equal to mk times the acceleration, and can be considerably larger than that product. 
That is why I have not called mk the added mass. This matter will be discussed in the 
last section of this paper. 

2. Analyses 
We consider the steady subsonic irrotational flow of a compressible fluid relative to 

a body moving from x = 00 to x = - a. The origin of Cartesian coordinates (x, y ,  z) 
is taken inside the body, most conveniently at its centre of gravity. The velocity 
components in the directions of increasing values of the coordinates in this steady flow 
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are denoted by (u, v, w), respectively, and those in the unsteady flow caused by the 
moving body are denoted by (u’, v‘, w’), so that 

u = 1 +u‘, v = v‘, w = w’, 

if the speed of the body is taken to be unity for convenience. The velocity potential and 
the stream functions for the steady flow will be denoted by ($, $, 2) for three- 
dimensional flows and ($, $) for two-dimensional flows. The velocity potential for the 
unsteady flow is denoted by 9’. We consider a plane initially at x = - 00 that moves 
kinematically with velocity 1 to the right, and mark (by dye, say) the fluid particles 
initially at the plane x = - a. The volume between the marked particles and the 
kinematic plane is the drift volume, and the final drift volume, when the kinematic 
plane has reached x = 00, is the volume of interest. This definition of the drift volume 
is in agreement with Darwin’s original, somewhat different, definition. 

For the steady-flow relative to the body, we have, to start with, 
(u, 0, w)  = grad 4, 

( P a  + @4, + @w), = 0, 

@u, PO, pw) = po grad $ x grad x, 

(1) 
which is a consequence of irrotationality. The equation of continuity is 

(2) 
where the subscripts indicate partial differentiation. This equation allows one to write 

(3) 
where po is the density at infinity, and $ and x are two stream functions. For two- 
dimensional flows (w = 0) we have 

(Pu, PO) = POW,, - $2). 
From (1) and (2) it follows that 

V2$ = -- u-+v-+w- p. 
p Y a  ax ay a a Z  ”1 

(4) 

( 5 )  

The right-hand side of ( 5 )  can be regarded as distributed exterior sources and sinks in 
an incompressible flow. But the sum S of these sources is 

where J is the Jacobin defined by 

on account of (1) and (3), with 
But q2 = u2+u2+w2. 
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Hence there is no net virtual source arising from the right-hand side of (9 ,  as indeed 
is to be expected. 

For any given body, the flow is determined by the well-known Rayleigh-Jansen 
method, in which the right-hand side of (5) is taken into account, and the solution will 
contain an interior doublet, which, together with the uniform flow, gives the flow at 
infinity. One might be concerned with the question of how far the exterior virtual 
sources are distributed. In principle they go all the way to infinity. But a quick 
calculation of the right-hand side of (3, upon use of the Bernoulli equation connecting 
the density p and the velocity, shows that the strengths of these sources drop off so fast 
as not to affect at all the calculations that follow. 

For the two-dimensional case, consider fluid drift in the domain D bounded 
externally by 

and internally by the body under consideration. In the (qi, $)-space, (1 1) has the form 
x = - x  0, x=xo, $ = - $ I # ,  $ =  (1 1) 

4 = qi(-Xo,Yh 9 = qi (XO,Y) ,  $ = -$m $ = $B.  (12) 
The crucial equation is 

where 
I =  Z1-Z2, 

Z = p [(u - 1)2 + u'] dxdy, JJ 

and all integrations are carried over D .  The integral Z represents the kinetic-energy 
mass mk, and Zl represents the drift mass md, as explained in Yih (1985). By virtue of 
(1) (for the two-dimensional case) and (4), 

The integral Zl defined by (15) is Darwin's definition of the drift mass when xo and 
$B become infinite. It is, however, prima facie a momentum mass. To show how it is 
related to the drift mass in D,  we again use the idea 

in Zl given by (17). For the domain D, the inner integral Sq-' dqi is the time required 
for any particle to go from -x, to xo along a streamline. The limits of integration are 
qi( - x,, $) and qi(xo, $). The other inner integral in Zl is 

1; dqi = 18 dqi = 2x,. 

Hence Zl is the integral, with respect to po$, of the difference of the time required for 
a particle to go from -x, to x, along a streamline and the time required for a particle 
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at lyl = 00 to do the same, and hence is the drift mass for the domain D if we assume 
that u near x = x, is already 1. It is not yet. But, as (19) will show, 

Thus, for domain D, 
1-24 = u' = O(X,2). 

m, = ma + O(x;'). 

As xo and @B become infinite, then for the entire fluid 

which justifies Darwin's definition of the drift mass. Note that the idea of the excess 
required time of travel has been used to equate a mass of dynamical nature to one of 
kinematical origin. The same idea can be used for the same purpose in the three- 
dimensional case. 

For large x and y ,  the presence of the body can be represented by a virtual doublet 
of strength a2, where a is an equivalent radius. Then for large x and y ,  

m, = ma, (186) 

ay1y - mx) , r2 = x2 +y2, 
a2(1x + my) 

# = x +  r2 3 @ = Y -  r2 

in which ( - I ,  - m) are the direction cosines of the axis of the doublet. Then, according 

where the limits of integration are - )crs ,  and +B, or 

I2 = -4a2p01arctan-+O(x3. @ B  

XO 

Upon letting x, and @ B  approach infinity, and keeping their ratio constant, we have, 
from (1 3), 

)crB mk = m, + 4p0 a' I arctan - , 
XO 

where mk and m, are, respectively, the kinetic-energy mass and the momentum mass. 
If the ratio @Jx0 approaches zero as xo +co (Eames et al. 1994), which amounts to 

integrating with respect to x from - 00 to co before integrating with respect to y ,  as 
done in Yih (1985), we have, upon using (18) and (20), the strong form of Darwin's 
theorem : 

mk = md. 
If that ratio is infinite, which amounts to integrating with respect to y from - 00 to 00 

first, 
mk = m, + 4np0 a2 1. 

This shows that m, and hence ma may be negative, i.e. the drift may be really a reflux. 
This is understandable because, for infinite )crB/xo, in most of D (before x, goes to 
infinity) the speed exceeds 1. It is below 1 only in a relatively small bounded region 
before and after the body. We note in passing that the integral I ,  can be written as 

and the integration with respect to @ performed first in the domain D .  The result is the 
same provided proper attention is given to the discontinuity of y at @ = 0 at the surface 
of the body. When the domain is finite, the order of integration should not, and does 
not, matter. 
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The last term in (20), when not zero, destroys the equality of mlc and md. But 
Darwin’s theorem still has a physical significance, because that term comes from the 
integral I, with a very small integrand spread over a large interval in y (or $) as x, and 
$g both become large. Hence if the integration with respect to $ is carried out, with 

$B = Nu, N B  1 ,  (21) 
and if xo = N3a,  (22) 
we have from (20), (18) and (22), as N becomes very large, the weak form of Darwin’s 
theorem : 

In (23), m, is the kinetic-energy mass for the entire fluid domain, but md is for the 
domain D of integration. Note that the contribution to m, from the region outside D is 
O(N-2) ,  as can be easily demonstrated by using (19), (21), and (22). Indeed, that is why 
we have chosen (22). To make the power (of N) larger than 3 would gain no accuracy; 
to make it less than 3 would lose sharpness. So Darwin’s theorem is reborn in a weaker 
form - weaker mathematically but physically significant and useful to the experimenter. 
Darwin himself recognized the physical significance of his result, in spite of its 
indeterminacy. What I have done here is to put his theorem into a weak but more 
precise form. The explanation of the choice of (22) and of the last term in (23) shows 
that (21), (22), and (23) say rather more than the results of Eames et al. (1994). 

The three-dimensional case can be similarly treated. Writing now 
R2 = x2+r2 ,  r2 = y2+z2,  we note that for large R 

a3(1x +my + nz) 
R3 # = x +  7 

in which (- I, - m, - n) are the direction cosines of the axis of the virtual doublet. The 
key equation is still 

(25) z = 1, -I,,  

where now 1 = J S p [ ( u  - 1)2 + v2  + w2] dx dy dz, 

By virtue of (1) and (3), 

11 = J J J P o ( T )  d# d$dX, 

The equation for the three-dimensional case corresponding to (18a) for the two- 

(30 4 

mm = md, (30 b) 

dimensional case is 

for domain D, which for infinite x, and ro becomes, for the entire fluid, 

again justifying Darwin’s definition of the drift mass. 

mm = md + O(xi3) 
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domain D of integration is bounded externally by 
We shall choose $ to become ultimately the Stokes stream function at large r .  The 

$ =  $,, x = - x , ,  x = x ,  (31) 

(32) 

where r and 0 are polar coordinates in the ( y ,  2)-plane. The error is insignificant, and 
vanishes as x,  +a. 

Using (24) and (30) and ignoring insignificant terms that vanish as xo+co, we have 

and internally by the body. At x = f x ,  and for large x,, we can write 
d$ dx = r dr d0, 

Upon keeping the ratio ro/xo constant and letting x,+ao, (25) becomes 

and all that has been said on the two-dimensional case can be repeated here. In 
particular, if ro/xo+ 0 as ro and x,  -too (Eames et af.  1994), as was in effect satisfied in 
Yih (1985), we have from (30) and (34) the strong form of Darwin's theorem: 

mk = ma. (35) 

By integrating from zero to r,, with 

ro = Nu, N B 1, 
and by taking 

we have, from (30) and (34), 
X ,  = N5I2a, 

rn, = ma + O(N-,) ,  

where mk is the kinetic-energy mass for the entire fluid domain, but ma is for the 
domain of integration D. It can be shown that the contribution to mg from outside D 
is O(N-,) ,  and that is why (37) is chosen for maximum sharpness of (38) without 
making the exponent of N in (37) unnecessarily large. Thus Darwin's theorem is reborn 
again in a weaker form, now for the three-dimensional case. Again, (36) to (38) say 
rather more than the Eames et al. paper. 

We have refrained from calculating the rn, and ma for any specific shape of the body. 
Once the velocity potential 4 for a flow is given, this calculation is straightforward 
though tedious. For a circular cylinder 4 is given in Van Dyke (1975, p. 16), and for 
a sphere it is given in Lighthill (1954, equations (2-9), p. 355). We call attention to the 
fact that in these results, as well as in equation (4.5) of an early article by Batchelor 
(1945), the terms containing r-l or R-2, in the two-dimensional and three-dimensional 
cases, respectively, are 

(39) 

and (40) 

where 0 is either a polar coordinate or a spherical coordinate. In (39) the first term 
represents a doublet. The second term is equal to 

a, r-l cos 0 + a, r-l cos 30, 

b, R-' cos 0 + b, R-' cos 38, 

a,(r-l cos 0 - 4r-1 cos 0 sin2 6). (41) 
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In (41), the first term is a doublet that can be combined with the a,-term in (39), and 
the second term, for $Jx0 = 0(W2), would give a term of O(N-') on the right-hand 
side of (20). The same can be said of the three-dimensional case. (The a2 in (19) and 
a3 in (24) are supposed to be the magnitude of the sum of the doublets.) Thus the weak 
form of the Darwin theorem, and a fortiori its strong form, are unaffected by terms like 
r-l cos 30 and R-2 cos 30. These arise from the compressibility of the fluid, and can be 
expected to be present for arbitrarily shaped bodies, not just for circular cylinders or 
spheres. Indeed, Batchelor (1945) did not deal with any specific body shape at all. 

3. Relation between the relative internal energy and the kinetic energy 

gravity effects. If gravity effects are neglected, the Bernoulli equation is 
The assumption of unbounded fluid space necessarily excludes the consideration of 

where p is the pressure, po is p at infinity, and y is the ratio of cp,. the specific heat at 
constant pressure, and c,, the specific heat at constant volume. Since for ideal gases 

RpT=p,  R =  c,-c,, 

where T is the absolute temperature, we have 
yc , (T-T, ) -g l - f f )  = 0,  (43) 

where T, is T a t  infinity. Assuming c, to be constant, we can define a relative internal 
energy per unit mass by 

multiply (43) by p, and integrate over the domain D defined by (21) and (22) in the 
plane case and by (36) and (37) in the three-dimensional case. The result is, when we 
recall the definition of Il by (15) or (27) and use E,. for the integral of e,, 

e,. = c,(T- Q, (44) 

YE,. = ;Il + +I2 (45) 

YE,. = +I (46) 

for domain D,  or, on account of (23)  or (38), 

for the entire fluid, when N becomes infinite, with I defined by (14) or (26). Since the 
velocity of the body is taken to be unity (or is used as the velocity scale), 1/2 represents 
the kinetic energy, in the laboratory frame, of the entire fluid, while E,. is its relative 
internal energy. 

Thus the total energy of the entire fluid is 

(kinetic energy). y + l  I = - - -  y + l  Er++I=  - 
2Y Y 

(47) 

Since the kinetic theory of gases has shown that T, and therefore c, T, is proportional 
to the sum of kinetic energies of the molecules of a gas macrospically at rest, (47) is not 
entirely surprising. But it does show that mk is not only the kinetic-energy mass, but 
is the energy mass as well, in the sense that the total energy of the entire fluid is 
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if U denotes the (dimensional) speed of the moving body. This is of some interest in its 
own right. 

4. Concluding remark 
I conclude this paper with an explanation of why I have refrained from identifying 

mk or m, with an added mass (denoted by ma in my previous paper on fluids with 
constant density). For a fluid with constant density, m, = m, = ma, and the added 
mass has the dynamical significance that when a body is accelerated in translation 
through the fluid it encounters a resistance equal to ma times the acceleration. This is 
how the term ‘added mass’ arose in the literature. If a body accelerates in a 
compressible fluid, the resistance it meets is not equal to mk (or my) times the 
acceleration, and may indeed be considerably larger. It is not constant with time even 
if the acceleration is constant. All this is obvious, since as the velocity of the body varies 
the flow is not determined by its instantaneous velocity alone but is dependent on the 
history of its motion, and since both energy and momentum may radiate toward 
infinity by means of sound waves - most obviously when the velocity of the body has 
an oscillatory component. So it would be misleading to call m, (or m,) the added mass. 
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